NIROSTA® 4303

Werkstoff-Nr.	1.4303 nach EN 10 088-2														
Kurznamen	D USA Japan GUS	irNi 18-12 305 n 18 N 11													
Chemische Zusammensetzung	-		Cr		Ni 11.0			Mn							
(in Gewichts-%)	mind. max.		6 17,0 19,0		11,0 13,0			2,0							
	Je nach gewünschten Eigenschaften können innerhalb der angegebenen Analysengrenzen Sondervereinbarungen getroffen werden.														
Lieferformen	kaltgewalzte Breitbänder, Spaltbänder, Präzisionsband														
Mechanische Eigenschaften (Querproben) bei RT nach EN 10 088-2	Abmessungs- bereiche			0,2% Dehngrenz (R _{p 0,2}) mind. N/mm ²			D (F m N	1% Dehngrenze (R _{p 1,0}) mind. N/mm ²		fest R _m	N/mm²		Bruch- dehnung A ₈₀ mind. %		
	Kaltband s ≤ 8			220	220		250		500 bis 650			40			
Mindestwerte bei höheren	Temperatur °C		100	150	20	00	250	300	350	400	450	500	550		
Temperaturen	0,2 % Dehngrenze (R _{p 0} mind. N/mm ²		$(R_{p\ 0,2})$	155	142	12	27	118	110	104	98	95	92	90	
	1,0 % D mind. N	1,0 % Dehngrenze (R _{p 1,} mind. N/mm ²		188	172	15	57	145	135	129	125	122	120	120	
Wärmebehandlung	Warmformgebung °C A			Abkühlung Wä				mebeha	·	Abkühlung			Gefüge		
	1150 bis 850		Lu	Luft 1			100	000 bis 1100			Wasser/Luft ausreichend schnell		Austenit		
Physikalische Eigenschaften	Dichte bei 20°	odul ei				Wärme- leitfähigkeit bei 20 °C		Wäi	spez. Wärme bei 20 °C		spez. elektrischer Widerstand bei 20 °C				
	kg/dm³	20°C		00°C					K ⁻¹	J · kg ⁻¹ K ⁻¹			$\Omega \cdot \text{mm}^2/\text{m}$		
	7,9 200 186 172 15 500 0,73								73						
	Wärmeausdehnung in 10 ⁻⁶ 100 °C 200 °C 30			-6 · K-1 zwischen 20 ° 00 °C			0°0 	°C und 500 °							
	16,0	16,5	1	7,0	17,5			18,0							
Oberflächen- ausführung	1 D (II a), 2 B (III c), 2 R (III d)														
Kantenausführung	unbesät	ımt, geschn	ittene	Kanten	ı, arrono	dier	te K	anten a	uf Anfr	age					

Chemische Beständigkeit

Unsere Druckschrift "Chemische Beständigkeit der NIROSTA® Stähle" enthält Tabellen, die einen gewissen Anhalt für die chemische Beständigkeit geben.

Verarbeitung

Der gegenüber NIROSTA® 4301 um ca. 2 % höhere Nickelgehalt dieses Stahles hat eine größere Austenitstabilität zur Folge. Die hierdurch erheblich verminderte Kaltverfestigungsneigung ermöglicht eine wesentlich bessere Kaltumformbarkeit z.B. durch Tiefziehen mit Folgezügen.

Die bei einer Warmumformung oder beim Schweißen entstehenden Anlauffarben oder Zunderbildungen beeinträchtigen die Korrosionsbeständigkeit und müssen deshalb chemisch oder mechanisch entfernt werden. Die spanende Bearbeitung muss mit hochwertigen Schnellarbeitsstählen oder besser noch mit Hartmetallwerkzeugen vorgenommen werden.

NIROSTA® 4303 ist polierbar.

Schweißen

Schweißeignung:

NIROSTA® 4303 ist gut schweißbar nach allen Verfahren (außer Gasschweißung)

Schweißzusatz:

Werkstoffnr. 1.4316 THERMANIT® JE

Max. Arbeitstemperatur (Zwischenlagentemperatur): 150 °C Wärmebehandlung nach dem Schweißen: Nicht erforderlich.

Verwendungshinweise

Die Hauptanwendung von NIROSTA® 4303 liegt bei der Herstellung von Präzisions-Tiefziehteilen mit Folgezügen, da dieser Stahl besonders für stärkere Kaltumformungen geeignet ist.