NIROSTA® 4306

Werkstoff-Nr.	1.4306 nach DIN 17 441/EN 10 088-2															
Kurznamen	D USA Japan GUS	(DIN/EN) (ASTM)	2 CrNi 19-11 14 L JS 304 L 5 Ch 18 N 11													
Chemische Zusammensetzung (in Gewichts-%) ¹⁾		C Cr		N		Mr		4n								
	mind. max.	- 0,03	18,0 20,0			-,-		2,0								
	¹⁾ Je nach gewünschten Eigenschaften können innerhalb der Analysengrenzen besondere Vereinbarungen getroffen werden.															
Lieferformen		warmgewalzte Breitbänder, kaltgewalzte Breitbänder, Spaltbänder, geschnittene Bleche, Ronden, Formzuschnitte, Präzisionsband														
Mechanische Eigenschaften (Querproben) bei RT nach EN 10 088-2	Abmessungs- bereich			R _{p 0,2} (0,2%-Dehn- grenze) N/mm²				R _{p 1,0} (1,0%-Dehn- grenze) N/mm²			R _m (Zug- festigkeit) N/mm²			A ₈₀ (Bruch- dehnung) %		
	Kaltband $s \le 8 \text{ mm}$ Warmband $s \le 13,5 \text{ mm}$			≥ 220 ≥ 200				≥ 250 ≥ 240			520 bis 670			≥ 45		
Mindestwerte bei höheren Temperaturen	Tempe	eratur °C	100) 150	0	200	25	50	300	350	400	450	50	0	550	
		R _{p 0,2} (0,2%-Dehngrenze) N/mm ²		7 132	2	118	10	08	100	94	89	85	8	1	80	
		R _{p 1,0} (1,0%-Dehngrenze) N/mm²		81 162		147	13	37	127	121	116	112	10	9	108	
Wärmebehandlung	Glühtemperatur °C			Dauer min				Abkühlung			Gefüç	Gefüge				
	1000 -	1000 – 1100			~ 5/mm Dicke				Wasser/Luft /			Austenit (ggf. Ferritanteile)				
Physikalische Eigenschaften	Dichte Elastizitätsmodul Wärmeausdehnung in 10 ⁻⁶ · K ⁻¹ kg/dm³ in kN/mm² bei zwischen 20 °C und 20 °C 100 °C 200 °C 300 °C 400 °C 500 °C 200 °C 300 °C 400 °C 500															
	7,9	200 194	_		179		72	16		16,0	16,5	17,0	17		18,0	
	Wärmeleitfähigkeit S bei 20 °C k			Spezifische Wärme- kapazität bei 20°C J/kg·K				EI	Elektrischer Widerstand bei 20 Ω·mm²/m			Magnetisierbarkeit				
	15 2) NIROS Die Ma	15 500 0,73 NIROSTA® 4301 kann im abgeschreckten Zustand leicht magnetisch sein. Die Magnetisierbarkeit nimmt mit steigender Kaltverfestigung zu.								vorhanden ²⁾						
Oberflächen- ausführung	1 D (II	1 D (II a), 2 B (III c), 2 R (III d), 1/2 G (IV)														
Kantenausführung	unbes	äumt, geschni	ittene	Kante	n, aı	rrondie	erte k	Kante	en auf	Anfrage	9					

Herausgeber: ThyssenKrupp Nirosta GmbH · 47794 Krefeld · www.nirosta.de

Chemische Beständigkeit

Unsere Druckschrift "Chemische Beständigkeit der NIROSTA® Stähle" enthält Tabellen, die einen gewissen Anhalt für die chemische Beständigkeit geben.

Verarbeitung

NIROSTA® 4306 lässt sich sehr gut kaltumformen (z.B. Biegen, Bördeln, Tiefziehen, Drücken). Die gegenüber unlegierten Stählen stärkere Kaltverfestigung verlangt jedoch entsprechend höhere Umformkräfte. Durch bestimmte Abstufungen der chemischen Zusammensetzung innerhalb der Norm-Analyse sowie durch Zusätze verschiedener anderer Elemente können je nach Anforderungen spezielle Umformeigenschaften (z.B. Folgezüge, Abstrecken, Drücken) erzielt werden. Im Druckbehälterbau sind für die Kaltumformung sowie die eventuelle Wärmenachbehandlung und das Schweißen die Regeln des AD-Merkblattes HP7/3 zu beachten.

Danach ist eine Wärmenachbehandlung nicht erforderlich bei:

- a) einem Kaltumformungsgrad ≤ 15% und
- b) nach dem Schweißen.

Bei Kaltumformungsgraden über 15 % ist eine Wärmenachbehandlung erforderlich.

Die bei der Wärmenachbehandlung oder dem Schweißen entstehenden Anlauffarben oder Zunderbildungen beeinträchtigen die Korrosionsbeständigkeit. Sie sind chemisch (z.B. durch Beizen oder Beizpasten) bzw. mechanisch (z.B. durch Schleifen bzw. durch Strahlen mit Glasperlen oder eisen- und schwefelfreiem Quarzsand) zu entfernen.

Die spanende Bearbeitung sollte wegen der Neigung zur Kaltverfestigung und wegen der schlechten Wärmeleitfähigkeit mit Werkzeugen aus hochwertigem Schnellarbeitsstahl (gute Kühlung erforderlich) oder besser noch mit Hartmetallwerkzeugen vorgenommen werden.

NIROSTA® 4306 ist polierbar.

Schweißen

Schweißeignung:

NIROSTA® 4306 ist gut schweißbar nach allen Verfahren (außer Gasschweißung)

Schweißzusatzwerkstoffe:

Werkstoffnr. 1.4316
THERMANIT® JE

Zulassungen:

Werkstoff und Schweißzusatzwerkstoff sind für den Druckbehälterbau zugelassen.

Verwendungshinweise

Auf Grund des niedrigen C-Gehalts lässt sich NIROSTA® 4306 in allen Abmessungen schweißen, ohne gegen interkristalline Korrosion anfällig zu werden. Die Beständigkeit gegen interkristalline Korrosion bleibt dabei auch im Dauerbetrieb bis 350 °C erhalten.

Dieser Stahl ist besonders für starke Kaltumformungen und Folgezüge geeignet.