NIROSTA® 4509

Werkstoff-Nr. Kurznamen	1.4509 nach EN 10 088-2 D (DIN/EN) X 2 CrTiNb 18 USA (ASTM) S 43940 (441) Japan – GUS –														
Chemische Zusammensetzung (in Gewichts-%)	mind. –		Cr 17,5 18,5	C	0,10 0,60		3 x C + 0,3 1,0		0,30		Mn				
Lieferformen	kaltgewalzte Breitbänder, Spaltbänder, geschnittene Bleche, Ronden, Formzuschnitte														
Mechanische Eigenschaften (Querproben) bei RT nach EN 10 088-2	Abmessungs- bereich			$\begin{array}{c} R_{p0,2} \\ (0,2\%\text{-Dehngred} \\ N/mm^2 \end{array}$				ze) R _m (Zug			jkeit)		A ₈₀ (Bruchdehnung) %		
HACH EN 10 000-2	Kaltba	nm	≥ 250					430 bis 630				≥ 18			
Mindestwerte bei höheren Temperaturen	Tempe	eratur °C	100	150	2	200	250) 3	00	350	350				
	R _{p 0,2} (0,2% N/mm	%-Dehngrenze) 230 220 210 205 200 180				180)								
Warmfestigkeit Richtwerte	°C	850 900 95			950	0									
	R _m N/mm	R _m 42			2	23	18								
Wärmebehandlung	Glühte °C	mperatur	Dauer min					Abkühlung			Gefüge				
	870 – 930 ~ 5/			mm Dicke Wa				asser/Luft Ferri							
Physikalische Eigenschaften	Dichte kg/dm	200°C 300°C				400	zwisch	ärmeausdehnung in 10 ⁻⁶ · K ⁻¹ vischen 20 °C und 00 °C 200 °C 300 °C 400 °C							
	7,7	220	215	210)	205		195		10,0	1	0,0	10,5	10,5	
	bei 20 °C ka			pezifische Wärme- pazität bei 20 °C kg · K				Elektrischer Widerstand b Ω · mm²/m					agnetisierbarkeit		
	25	25 460)			0,60			vorhanden			
Oberflächen- ausführung	1 D (II a), 2 B (III c)														
Kantenausführung	unbes	äumt, geschni	ttene Ka	inten,	arro	ndiert	e Ka	nten	auf A	nfrage					

Herausgeber: ThyssenKrupp Nirosta GmbH · 47794 Krefeld · www.nirosta.de

Chemische Beständigkeit

Die chemische Beständigkeit des NIROSTA® 4509 ist einzuordnen zwischen den bekannten stabilisierten 17 %igen Cr-Stählen und den austenitischen CrNi-Werkstoffen.

Unsere Druckschrift "Chemische Beständigkeit der NIROSTA® Stähle" enthält Tabellen, die einen gewissen Anhalt für die chemische Beständigkeit geben.

Verarbeitung

NIROSTA® 4509 lässt sich gut kaltumformen (z.B. Biegen, Bördeln,Tiefziehen, Drücken). Bei kaltgewalzten Bändern und Blechen ergibt die erzielte Kornverfeinerung eine verhältnismäßig gute Zähigkeit und Umformbarkeit. Die längsorientierte Walzrichtung ist jedoch zu berücksichtigen; so müssen z.B. scharfe Abkantungen parallel zur Walzrichtung vermieden werden. Abkantradius mindestens 2 x Blechdicke.

Da ferritische Stähle kaltspröde sind, muss die Umformung mindestens bei Raumtemperatur erfolgen.

Die bei einer Wärmebehandlung oder dem Schweißen entstehenden Anlauffarben oder Zunderbildungen beeinträchtigen die Korrosionsbeständigkeit. Sie sind chemisch (z.B. durch Beizen oder Beizpasten) bzw. mechanisch (z.B. durch Schleifen bzw. durch Strahlen mit Glasperlen oder eisenund schwefelfreiem Quarzsand) zu entfernen.

Die spanende Bearbeitung ist den Bearbeitungsbedingungen eines weichen, unlegierten Baustahls mit ca. 500 N/mm² Festigkeit gleichzusetzen.

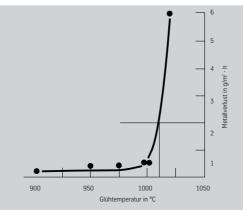
Die Werkzeuge sollten aus hochwertigem Schnellarbeitsstahl oder Hartmetall bestehen.

NIROSTA® 4509 ist nicht polierbar.

Schweißen

Schweißeignung:

NIROSTA® 4509 ist gut schweißbar nach allen Verfahren (außer Gasschweißung)


Schweißzusatzwerkstoffe:

Werkstoffnr. 1.4370 THERMANIT® X

Verwendungshinweise

NIROSTA® 4509 ist entwickelt worden für Schalldämpfer- und Abgasentgiftungsanlagen. Auf Grund seines Legierungsaufbaus weist dieser Stahl neben einer Zunderbeständigkeit bis über 950°C bei Dauerbetrieb auch eine gute Korrosionsbeständigkeit gegen die im Abgassystem auftretenden Beanspruchungen auf.

Massenverlust in Abhängigkeit von der Glühtemperatur bei einer Versuchsdauer von 120 h mit Zwischenabkühlungen nach je 24 h in der Luft.