

ResiBoost BG e-HM MTA10C

CAD-3D-Modelle auf Anfrage

ResiBoost mit BG-M:

- Druckwasserautomat mit ResiBoost Steuer- und Regeleinheit, Drehzahl reguliert.
- mit horizontaler Kreiselpumpe und kleinem Membranbehälter
- Ejektorpumpe selbstansaugend Baureihe BG

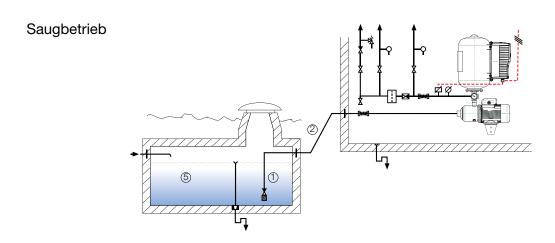
ResiBoost mit e-HM-M:

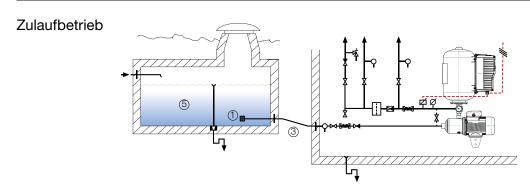
- Druckwasserautomat mit ResiBoost Steuer- und Regeleinheit, Drehzahl reguliert
- Druckwasserautomat mit horizontaler Kreiselpumpe und kleinem Membranbehälter
- Kreiselpumpe normalsaugend Baureihe e-HM

ResiBoost ist ein intelligentes Konstantdrucksystem für die Hauswasserversorgung. Eine Komplettlösung besteht aus einer Lowara Edelstahlpumpe, einem Drehzahlregelgerät und einem kleinen Membranbehälter. Das System ist auf konstanten Druck eingestellt, leicht zu installieren und zu bedienen. Der ResiBoost ist geschützt gegen Überstrom, Über-/Unterspannung, Kurzschluss und Trockenlauf. Er kann bei Ausfall des Steuerelements manuell überbrückt werden.

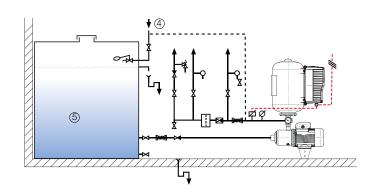
	[1]	[kW]	Abmessungen [mm]					Anschlüsse ISO 7-1 ["]			
Code	Kessel	Motorl.				L	A1	A2	Fig		
107320070-RES	25	0.55	69	404	169	112	812	380	Rp 11/4	Rp 1	BG
104462040-RES	25	1.1	69	412	169	112	812	425	Rp 11/4	Rp 1	BG
104600050-RES	25	0.75	147	363	90	148	770	455	Rp 1	Rp 1	НМ
104600170-RES	25	1.1	147	363	90	148	770	455	Rp 1	Rp 1	НМ
104600290-RES	25	1.5	149	363	90	148	770	457	Rp 11/4	Rp 1"	НМ
	107320070-RES 104462040-RES 104600050-RES 104600170-RES	Code Kessel 107320070-RES 25 104462040-RES 25 104600050-RES 25 104600170-RES 25	Code Kessel Motorl. 107320070-RES 25 0.55 104462040-RES 25 1.1 104600050-RES 25 0.75 104600170-RES 25 1.1	Code Kessel Motorl. A 107320070-RES 25 0.55 69 104462040-RES 25 1.1 69 104600050-RES 25 0.75 147 104600170-RES 25 1.1 147	[I] [kW] Code Kessel Motorl. A H1 107320070-RES 25 0.55 69 404 104462040-RES 25 1.1 69 412 104600050-RES 25 0.75 147 363 104600170-RES 25 1.1 147 363	[I] [kW] [m] Code Kessel Motorl. A H1 H2 107320070-RES 25 0.55 69 404 169 104462040-RES 25 1.1 69 412 169 104600050-RES 25 0.75 147 363 90 104600170-RES 25 1.1 147 363 90	Code Kessel Motorl. A H1 H2 H3 107320070-RES 25 0.55 69 404 169 112 104462040-RES 25 1.1 69 412 169 112 104600050-RES 25 0.75 147 363 90 148 104600170-RES 25 1.1 147 363 90 148	Code Kessel Motorl. A H1 H2 H3 H4 107320070-RES 25 0.55 69 404 169 112 812 104462040-RES 25 1.1 69 412 169 112 812 104600050-RES 25 0.75 147 363 90 148 770 104600170-RES 25 1.1 147 363 90 148 770	Code Kessel Motorl. A H1 H2 H3 H4 L 107320070-RES 25 0.55 69 404 169 112 812 380 104462040-RES 25 1.1 69 412 169 112 812 425 104600050-RES 25 0.75 147 363 90 148 770 455 104600170-RES 25 1.1 147 363 90 148 770 455	Code Kessel Motorl. A H1 H2 H3 H4 L A1 107320070-RES 25 0.55 69 404 169 112 812 380 Rp 1½ 104462040-RES 25 1.1 69 412 169 112 812 425 Rp 1½ 104600050-RES 25 0.75 147 363 90 148 770 455 Rp 1 104600170-RES 25 1.1 147 363 90 148 770 455 Rp 1	[I] [kW] [mm] ISO 7-1 [*] Code Kessel Motorl. A H1 H2 H3 H4 L A1 A2 107320070-RES 25 0.55 69 404 169 112 812 380 Rp 1¼ Rp 1 104462040-RES 25 1.1 69 412 169 112 812 425 Rp 1¼ Rp 1 104600050-RES 25 0.75 147 363 90 148 770 455 Rp 1 Rp 1 104600170-RES 25 1.1 147 363 90 148 770 455 Rp 1 Rp 1

Technische Änderungen und Abmessungen vorbehalten. Andere Leistungen auf Anfrage.


ResiBoost BG e-HM MTA10C


Gloor-Druckwasserautomat mit ResiBoost gesteuerter horizontaler Kreiselpumpe und kleinem Membranbehälter

Legende:


- ① Schlammsack periodisch abschlämmen
- ② Saugleitung stetig ansteigend (ohne Durchhänger) verlegen. Die mögliche Saughöhe ist abhängig von:

 - Höhendifferenz Reservoir-Pumpe, Höhenlage über Meer,
 Druckverlust in Leitung, Haltedruckhöhe (NPSH) der Pumpe.
 Die Summe der Einflüsse darf 8 mWS nicht überschreiten.
- 3 Zulauf-, resp. Ausschaltdruck an der Pumpe darf 6 bar niemals überschreiten. (Anlagen für höheren Druck auf Anfrage)
- 4 Mögliche Notverbindung bei ausreichenden Druckverhältnissen.
- (5) Wasserstandsüberwachung und Trockenlaufschutz siehe Seite 6.

Mit Vorlaufbehälter

Symbolerklärung

Leistungstabelle Resiboost BG MTA10C

		Q = Fördermenge [l/min]							Q = Fördermenge [l/min]									
		0	10	20	30	40	50	60	70									
BG	Leistung [kw]		H = Förderdruck [bar]															
BG3	0,37	3,7	3,1	2,6	2,1	1,8	1,4											
BG5	0,55	4,0	3,6	3,2	2,9	2,6	2,2	1,9										
BG7	0,75	4,5		3,8	3,5	3,2	2,9	2,6										
BG9	0,90	5,0		4,1	3,8	3,5	3,2	3,0										
BG11	1,10	5,3		4,6	4,2	3,9	3,6	3,3	3,0									

Leistungstabelle Resiboost e-HM MTA10C mit Noryl Laufrad

			Q = Fördermenge [l/min]									
		0	12	16	21	26	31	36	40			
1HMP	Leistung [kw]		H = Förderdruck [bar]									
1HM02	0,30	2,2	2,0	1,9	1,8	1,6	1,4	1,2	1,1			
1HM03	0,30	3,3	2,9	2,7	2,5	2,3	2,0	1,7	1,4			
1HM04	0,40	4,4	3,9	3,7	3,4	3,1	2,7	2,3	2,0			
1HM05	0,50	5,4	4,8	4,5	4,2	3,7	3,3	2,8	2,3			
1HM06	0,75	6,9	6,3	6,0	5,6	5,1	4,6	4,0	3,4			

			Q = Fördermenge [l/min]										
		0	20	28	36	44	52	60	70				
знмР	Leistung [kw]		H = Förderdruck [bar]										
3HM02	0,30	2,3	2,1	2,0	1,8	1,6	1,4	1,2	0,9				
3HM03	0,40	3,5	3,1	2,9	2,7	2,4	2,1	1,8	1,3				
3HM04	0,50	4,6	4,1	3,8	3,4	3,1	2,7	2,2	1,6				
3HM05	0,75	6,0	5,5	5,2	4,9	4,4	3,9	3,4	2,6				
3HM06	1,1	7,3	6,7	6,4	5,9	5,4	4,8	4,1	3,2				

			Q = Fördermenge [l/min]								
		0	40	53	66	79	92	105	120		
5HMP	Leistung [kw]				H = Förder	druck [bar]					
5HM02	0,40	2,4	2,0	1,9	1,7	1,5	1,3	1,1	0,7		
5HM03	0,50	3,5	2,9	2,6	2,4	2,1	1,8	1,4	0,9		
5HM04	1,1	4,9	4,3	4,0	3,8	3,4	3,0	2,5	1,8		
5HM05	1,1	6,1	5,3	5,0	4,6	4,2	3,7	3,1	2,1		
5HM06	1,5	7,4	6,4	6,0	5,6	5,1	4,5	3,7	2,6		

					Q = Fördern	nenge [l/min]					
		0	83	108	133	158	183	208	233		
10HMP	Leistung [kw]		H = Förderdruck [bar]								
10HM02	1,1	3,1	2,8	2,6	2,5	2,3	2,0	1,7	1,4		
10HM03	1,5	4,6	4,1	3,9	3,6	3,3	3,0	2,6	2,1		
10HM04	2,2	6,1	5,6	5,3	5,0	4,6	4,2	3,7	3,0		

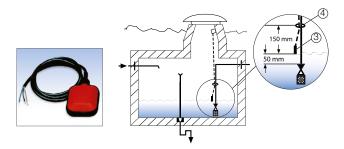
Leistungstabelle Resiboost e-HM MTA10C mit Edelstahl Laufrad

					Q = Förderr	nenge [l/min]			
1HMS		0	12	16	21	26	31	36	40
1HMN	Leistung [kw]				H = Förde	rdruck [bar]			
1HM02	0,30	1,2	1,2	1,2	1,1	1,0	0,9	0,7	0,6
1HM03	0,30	1,8	1,8	1,7	1,6	1,5	1,3	1,1	0,9
1HM04	0,30	2,4	2,3	2,3	2,1	1,9	1,7	1,4	1,1
1HM05	0,30	2,9	2,9	2,8	2,6	2,4	2,1	1,7	1,3
1HM06	0,30	3,5	3,4	3,3	3,1	2,8	2,4	1,9	1,5
1HM07	0,55	4,2	4,2	4,1	3,9	3,6	3,1	2,6	2,1
1HM08	0,55	4,8	4,8	4,7	4,4	4,1	3,6	2,9	2,3
1HM09	0,55	5,4	5,3	5,2	4,9	4,5	4,0	3,2	2,6
1HM11	0,55	6,6	6,4	6,3	5,9	5,4	4,7	3,8	3,0
1HM12	0,55	7,2	7,0	6,8	6,4	5,9	5,1	4,1	3,2
1HM14	0,75	8,5	8,3	8,1	7,7	7,1	6,2	5,1	4,1
1HM16	0,75	9,6	9,5	9,2	8,8	8,0	7,0	5,7	4,5
1HM18	1,1	10,9	10,8	10,6	10,0	9,2	8,1	6,7	5,4
1HM20	1,1	12,1	11,9	11,7	11,1	10,2	8,9	7,4	5,9
1HM22	1,1	13,3	13,1	12,8	12,1	11,1	9,7	8,0	6,4
1HM25	1,5	15,1	14,9	14,6	13,9	12,8	11,2	9,2	7,4

Leistungstabelle Resiboost e-HM MTA10C mit Edelstahl Laufrad

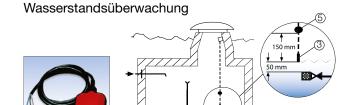
		Q = Fördermenge [I/min]							
знмѕ		0	20	29	38	47	56	65	73
3HMN	Leistung [kw]				H = Förder	druck [bar]			
3HM02	0,30	1,5	1,5	1,4	1,3	1,2	1,0	0,9	0,6
3HM03	0,30	2,2	2,1	2,0	1,9	1,7	1,5	1,2	0,9
3HM04	0,30	2,9	2,8	2,6	2,4	2,2	1,9	1,5	1,0
3HM05	0,40	3,7	3,5	3,3	3,1	2,8	2,4	1,9	1,3
3HM06	0,50	4,4	4,2	3,9	3,6	3,3	2,8	2,2	1,5
3HM07	0,75	5,3	5,2	5,0	4,7	4,3	3,8	3,2	2,4
3HM08	0,75	6,0	5,9	5,7	5,3	4,9	4,3	3,6	2,7
3HM09	1,1	6,8	6,8	6,5	6,1	5,6	5,0	4,1	3,1
3HM10	1,1	7,6	7,5	7,2	6,8	6,2	5,5	4,5	3,4
3HM11	1,1	8,3	8,2	7,9	7,4	6,8	6,0	4,9	3,7
3HM12	1,1	9,1	8,9	8,5	8,0	7,3	6,5	5,3	4,0
3HM13	1,1	9,8	9,6	9,2	8,6	7,9	6,9	5,7	4,3
3HM14	1,5	10,6	10,4	10,0	9,4	8,6	7,6	6,3	4,8
3HM16	1,5	12,1	11,9	11,4	10,7	9,8	8,6	7,1	5,3
3HM17	1,5	12,8	12,6	12,1	11,3	10,3	9,1	7,5	5,6
3HM19	2,2	14,4	14,2	13,7	12,9	11,8	10,4	8,7	6,6
3HM21	2,2	15,9	15,7	15,0	14,1	13,0	11,4	9,5	7,1

					Q = Fördern	nenge [l/min]			
5HMS		0	40	57	74	91	108	125	142
5HMN	Leistung [kw]				H = Förder	druck [bar]			
5HM02	0,30	1,5	1,4	1,3	1,2	1,1	1,0	0,8	0,5
5HM03	0,40	2,2	2,1	2,0	1,8	1,6	1,4	1,1	0,8
5HM04	0,50	2,9	2,7	2,6	2,3	2,1	1,8	1,4	9,8
5HM05	0,75	3,8	3,6	3,5	3,3	3,0	2,6	2,2	1,6
5HM06	1,1	4,5	4,4	4,2	4,0	3,7	3,2	2,7	2,0
5HM07	1,1	5,3	5,1	4,9	4,6	4,2	3,7	3,1	2,3
5HM08	1,1	6,0	5,8	5,5	5,2	4,8	4,2	3,5	2,6
5HM09	1,5	6,8	6,6	6,3	5,9	5,4	4,8	4,0	3,0
5HM10	1,5	7,5	7,3	7,0	6,5	6,0	5,3	4,4	3,3
5HM11	1,5	8,3	8,0	7,6	7,1	6,5	5,8	4,8	3,5
5HM12	2,2	9,1	8,8	8,4	7,9	7,3	6,5	5,4	4,1
5HM13	2,2	9,8	9,5	9,1	8,6	7,9	7,0	5,8	4,3
5HM14	2,2	10,6	10,2	9,8	9,2	8,4	7,4	6,2	4,6
5HM15	2,2	11,3	10,9	10,4	9,8	9,0	7,9	6,6	4,9


			Q = Fördermenge [l/min]									
10HMS		0	83	108	133	158	183	208	233			
10HMN	Leistung [kw]		H = Förderdruck [bar]									
10HM02	0,75	2,4	2,2	2,1	1,9	1,8	1,5	1,3	1,0			
10HM03	1,1	3,6	3,4	3,2	3,0	2,8	2,5	2,2	1,8			
10HM04	1,5	4,8	4,5	4,3	4,1	3,7	3,4	2,9	2,4			
10HM05	2,2	6,1	5,6	5,4	5,1	4,8	4,3	3,7	3,0			
10HM06	2,2	7,2	6,7	6,4	6,1	5,6	5,0	4,4	3,6			

					Q = Fördern	nenge [l/min]					
15HMS		0	133	178	223	268	313	358	400		
15HMN	Leistung [kw]		H = Förderdruck [bar]								
15HM02	1,5	2,9	2,6	2,5	2,4	2,2	1,9	1,6	1,2		
15HM03	2,2	4,4	4,0	3,8	3,6	3,3	3,0	2,5	2,1		

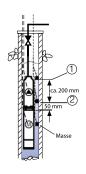
					Q = Fördern	nenge [l/min]						
22HMS		0	183	233	283	333	383	433	483			
22HMN	Leistung [kw]		H = Förderdruck [bar]									
22HM02	2,2	3,0	2,8	2,7	2,5	2,3	2,0	1,5	1,0			


Wasserstandsüberwachung

Wasserstandsüberwachung (Befestigung mit Kabelbinder) Typ WSU/WR Code 80070

Bestehend aus:

- 1 Steuerungskabel
- 1 Schwimmerschalter mit 5 m Kabel
- 3 Kabelbinder


Wasserstandsüberwachung (Kabel freihängend mit Gewicht) Typ WSU/WR + H $\,$ Code 80071

Bestehend aus:

- 1 Steuerungserweiterung
- 1 Schwimmerschalter leicht mit 5 m Kabel + Gewicht
- 1 Halter zu Wasserstandsregler, rostfrei
- 3 Kabelbinder

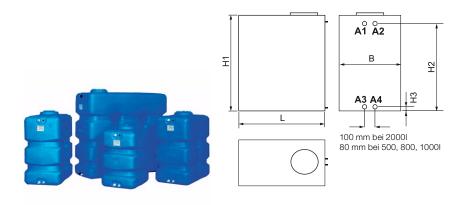
Wasserstandsüberwachung

Wasserstandsüberwachung (mit 3 Sonden) Typ WSU/S Code 80072

Bestehend aus:

- 1 Steuerungserweiterung
- 3 elektronische Sonden mit je 10 m Kabel (oder Kabellänge nach Bedarf)
- 5 Kabelbinder (oder nach Bedarf)

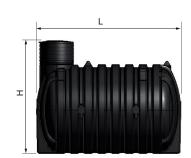
Minimal-Druck-Überwachung



Minimal-Druck-Überwachung Code 80098-1 & 80098-2

Wo aus baulichen Gründen die Installation einer Wasserstandsüberwachung mit Wasserstandsregler oder elektronischen Sonden nicht möglich oder sehr aufwändig ist, kann der Trockenlaufschutz über einen minimalen Druck sichergestellt werden. Sinkt der Druck ca. 1.5–2.5 bar unter den Einschaltdruck ab, wird die Pumpe über einen zweiten Druckschalter gesperrt. Nach manueller Störungsbehebung kann die Steuerung wieder auf «AUTO» gestellt werden.

Vorlaufbehälter


Vorlaufbehälter für Trinkwasser

Vorlaufbehälter für Trinkwasser												
			Abmessungen [mm]					["]				
Тур	Code	Kessel [I]	L	В	H1	H2	Н3	A1	A2	A3	A4	
VB500 o. S.	43600	500	840	700	1060	835	60	1	1	1	1	
VB500 m. S ¾	43601	500	840	700	1060	835	60	3/4	1	1	1	
VB500 m. S1"	43602	500	840	700	1060	835	60	1	1	1	1	
VB800 o. S.	43603	800	1290	670	1320	1075	60	1	1	1	1	
VB800 m. S ¾	43604	800	1290	670	1320	1075	60	3/4	1	1	1	
VB800 m. S1"	43605	800	1290	670	1320	1075	60	1	1	1	1	
VB1000 o. S.	43606	1000	1400	670	1420	1165	70	1	1	1	1	
VB1000 m. S ¾	43607	1000	1400	670	1420	1165	70	3/4	1	1	1	
VB1000 m. S1"	43608	1000	1400	670	1420	1165	70	1	1	1	1	
VB2000 o. S.	43609	2000	2050	695	1900	1660	90	11/2	3/4	1½	3/4	
VB2000 m. S ¾	43610	2000	2050	695	1900	1660	90	11/2	3/4	1½	^1	
VB2000 m. S1"	43611	2000	2050	695	1900	1660	90	1½	1	1½	1	

Vorlaufbehälter für Trinkwasser aus PE-Kunststoff. Zum Beispiel zur Aufstellung auf plane Unterlage. Auf Anfrage liefern wir auch spezielle Behälter.

Legende
o. S.: ohne Schwimmerventil
m. S %: mit Schwimmerventil G ¾"
m. S1": mit Schwimmerventil G 1"

Vorlaufbehälter für Erdeinbau

Vorlaufbehälter für Erdeinbau										
			Abmessungen [mm]							
Тур	Code	Kessel [I]	ØD	Ø D2	Н	L				
CU-3000	EG1720551	3000	1585	500	1850	1920				
CU-5000	EG1720557	5000	1850	500	2150	2380				
CU-10000	EG1720563	10000	2130	700	2140	3410				

Vorlaufbehälter für Erdeinbau. Auf Anfrage liefern wir auch spezielle Behälter.

Gloor Pumpenbau AG

Wir beschäftigen uns seit Jahrzehnten professionell mit Wasserpumpen und Druckwasserautomaten. Aus Baugruppen und Komponenten renommierter Hersteller stellen wir bei uns vollständige Anlagen für die verschiedensten Anwendungsbereiche her.

Unsere Druckwasserautomaten kommen zur Anwendung, wenn kein, ein ungenügender oder zu schwacher Versorgungsdruck vorliegt.

Durch unsere fachmännische Anpassung sind sie für Trink-, Grund-, Regen-, Brauch- und aufbereitetes Wasser geeignet.

Gloor Druckwasserautomaten werden grundsätzlich für eine lange, störungsfreie Nutzung, bei praktisch wartungsfreiem Betrieb, ausgelegt.

Die umfassende Produktepalette mit vielen Leistungsabstufungen ermöglicht es für alle Objektvarianten optimale und wirtschaftliche Lösungen zu finden.

Wir führen ein grosses, auf die Produkte abgestimmtes Zubehörprogramm, z.B. Pumpensteuerungen, Überwachungssteuerungen, Funktionswichtige Armaturen, Vorlaufbehälter, Tanks für die Erdverlegung, usw.

Der erfahrene Gloor-Kundendienst steht Ihnen jederzeit bei Störungen oder für Wartungsarbeiten zur Verfügung.

Hauptsitz

Gloor Pumpenbau AG

Thunstrasse 25 CH-3113 Rubigen Telefon +41 (0) 31 721 52 24 Telefax +41 (0) 31 721 54 34 info@gloor-pumpen.ch www.gloor-pumpen.ch

Filiale Mittelland

Gloor Pumpenbau AG

Industriestrasse 25 CH-5036 Oberentfelden Telefon +41 (0)62 552 02 08 info@gloor-pumpen.ch www.gloor-pumpen.ch

Filiale Westschweiz

Gloor Pumpenbau SA

Rue du Collège 3 Case postale CH-1410 Thierrens Téléphone +41 (0)21 905 10 80 info@gloor-pompes.ch www.gloor-pompes.ch

