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• What is Multi-Objective Optimization (MOO)?

• Why do you want it?

• How does it work?

• Case study : Simulations

• Use case : Cost optimal fabric defect classification

• OptiLearn Setting
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What is Multi-Objective Optimization 
(MOO)?
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• Optimization for multiple competing objectives (e.g., precision vs. recall)

• Train parameterized model that can change their behavior during runtime

OptiLearn - 
Model

Data/Context

Preference between the 
objectives

Preference-optimal 
solution
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• In MOO optimality is situational

• Depending on the current preference the 
optimal solution may diver

• Target: Pareto Frontier

Preference Optimal Solution, S*(Pref): 
Utility(Pref, Solution) = Pref*Obj0(Solution) + (1-Pref)*Obj1(Solution)

  S*(Pref) = argmax[Utility(Pref, Solution)]
Solution

Pareto Frontier
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• Adjust model behavior to changing circumstances

• Shift focus by changing preferences

• All that without the need for retraining

Pref0

Pref1

…

Model0

Model1

OptiLearn Model

Without MOO With MOO

…

One model per preference
One model for all

 preferences
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• We train the model on a preference space rather than one or set of 
preferences

• Generating a parameterized model to form a manifold connecting preference 
and solution space

Manifold Model:
connecting preferences 

to solutions
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Training
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Inference
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Simulations

Setting:
• Sequential decision making 
• Reinforcement learning setup

Evaluation:
• Simple grid world example
• Complex robot control environments

Objective: 
Provide optimal policy for the given preferences.

The model is be used in the field under varying conditions 
without retraining.

t=0 t=1 t=2

…

…

…

…

b

a

c

b

a

c

Agent

Environment

Action Observation, 
Reward
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Simulations – Simple Grid World

Deep-Sea-Treasure (DST) is a simple well known multi-
objective environment
(Vamplew et al., 2011).

• A grid world with sparse rewards

• The objectives are to maximize the reward value and to minimize 
the steps to find it

• Experiments are done with different utility functions

https://doi.org/10.1007/s10994-010-5232-5
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Simulations – Simple Grid World

Linear:

Log:

Our algorithm improved on stability and performance for linear and 
non-linear utility functions

ESMO-Q (ours) SEMO-Q



12Case Study

Oct-24 OptiLearn - Adaptive Machine Learning via Multi-Objective Optimisation

Simulations – Robot Control

• Half Cheetah
• Energy consumption vs. distance travelled
• State space dimensions: 17
• Action space dimensions: 6

• Hopper
• Energy consumption vs. distance travelled
• State space dimensions: 11
• Action space dimensions: 3

Both environments are complex control problems and part of the 
mo-gymnasium library (Alegre et al., 2022).

https://bnaic2022.uantwerpen.be/wp-content/uploads/BNAICBeNeLearn_2022_submission_6485.pdf
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Simulations – Robot Control

For the complex environment, our algorithm 
improved on stability and performance

• Expected Utility Loss (EUL) describes the distance 
to the preference optimal outcome

Linear:

Log:
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Simulations – Robot Control

For the complex environment, our algorithm 
improved on stability and performance

• Expected Utility Loss (EUL) describes the distance 
to the preference optimal outcome

• Demo Time!

Linear:

Log:
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Textile fabric defect classification

Setting:
• Input: Images of fabric
• Output: defect classifications (holes, stains, etc.)

Problem statement:
• False alarm costs: interrupt the production for a false positive
• Missed defect cost: miss a critical defect (false negative)

Objective: 
Provide optimal policy for the given costs.

The model is be used in the field under varying 
conditions without retraining.
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Textile fabric defect classification

OptiLearn - 
Classifier

Raw Material
Misclassification 

costs

Cost-optimal Defect 
Classification

Defined by the operator and can be 
changed at any time or fetched from 

a frequently updated database

Production line

Filtered Product

Decision logic:
How to handle 

detected defects
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Seamless workflow:

• Training 

• Tracking & Evaluation

• Publishing

• Life cycle management

Experiment

Config File:
specifies model, 

environment, etc.

Logger:
- Model tracking
- Logging of information for 

reproducibility

Environment:
- Data loading
- Processing 
- Serving

Agent:
- Model handling
- Training

Tracking server (Neptune, 
MLFlow, etc.)

Initializes
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Seamless workflow:

• Training 

• Tracking & Evaluation

• Publishing

• Life cycle management
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• You want to build you own solution?

• You want to apply MOO to your use cases?

• You are curious about the math behind all this?

➔ Contact us! Eike.Mentzendorff@Spryfox.de
Christian.Debes@Spryfox.de

mailto:Eike.Mentzendorff@Spryfox.de
mailto:Christian.Debes@Spryfox.de
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