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Topics

What is Multi-Objective Optimization (MOQO)?
Why do you want it?

How does it work?

Case study : Simulations

Use case : Cost optimal fabric defect classification

OptiLearn Setting



What is Multi-Objective Optimization
(MOO)?

e Optimization for multiple competing objectives (e.g., precision vs. recall)

* Train parameterized model that can change their behavior during runtime
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What is MOQ?

Pareto Frontier
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Preference Optimal Solution, S*(Pref):
Utility(Pref, Solution) = Pref*0ObjO(Solution) + (1-Pref) *Obj1(Solution)

S*(Pref) = argmax[Utility(Pref, Solution)]

Solution




Why do you want it?

Adjust model behavior to changing circumstances

Shift focus by changing preferences

All that without the need for retraining
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How does it work?

We train the model on a preference space rather than one or set of
preferences

Generating a parameterized model to form a manifold connecting preference
and solution space

Preference space with all Preferences and Solution space with all
relevant preference correspondi ng solutions: relevant solutions
constellations 0 D A
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How does it work?

Training
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One dimensional loss for the
base algorithm optimization

Base algorithm
(e.g., on Resnet
basis)

Model output
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Dynamic loss
function
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How does it work?
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Setting: 4

Evaluation:
e Simple grid world example

Case Study

Sequential decision making
Reinforcement learning setup

Action

Agent

~

Observation,
Reward

[ Environment ]

Complex robot control environments

Objective:

Provide optimal policy for the given preferences.
The model is be used in the field under varying conditions

without retraining.




Case Study

Deep-Sea-Treasure (DST) is a simple well known multi-
objective environment
(Vamplew et al., 2011).

* A grid world with sparse rewards

* The objectives are to maximize the reward value and to minimize
the steps to find it

* Experiments are done with different utility functions

linear: o(r,w)=w'r

log: (r,w) =), sign(r;)log(|ri| + €)w;
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https://doi.org/10.1007/s10994-010-5232-5

Case Study

Simulations — Simple Grid World

Our algorithm improved on stability and performance for linear and
non-linear utility functions
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Case Study

e Half Cheetah
* Energy consumption vs. distance travelled
e State space dimensions: 17
e Action space dimensions: 6

* Hopper
* Energy consumption vs. distance travelled
e State space dimensions: 11
e Action space dimensions: 3

Both environments are complex control problems and part of the
mo-gymnasium library (Alegre et al., 2022).
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https://bnaic2022.uantwerpen.be/wp-content/uploads/BNAICBeNeLearn_2022_submission_6485.pdf

Case Study .

Simulations — Robot Control
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Case Study

Simulations — Robot Control

For the complex environment, our algorithm
improved on stability and performance

Expected Utility Loss (EUL) describes the distance
to the preference optimal outcome

Demo Time!
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Use case

Setting:

Input: Images of fabric

e Qutput: defect classifications (holes, stains, etc.)

Problem statement:

False alarm costs: interrupt the production for a false positive
Missed defect cost: miss a critical defect (false negative)

Objective:
Provide optimal policy for the given costs.
The model is be used in the field under varying
conditions without retraining.
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[ Raw Material ]

Production line

/

Decision logic:
How to handle

\

\ detected defects -

[ Filtered Product ]

Use case

Textile fabric defect classification
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Defined by the operator and can be
changed at any time or fetched from
a frequently updated database
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OptiLearn Setting

Seamless workflow:

* Training

* Tracking & Evaluation
* Publishing

* Life cycle management

Config File:
specifies model, Experiment \
environment, etc. Initializes
~ Y
Environment: Agent:
- Dataloading |:f‘> - Model handling
- Processing - Training
- Servin
— s | §
\
Logger:
- Model tracking
- Logging of information for
K % reproducibility ) /
[ ]
NV

Tracking server (Neptune,
MLFlow, etc.



OptiLearn Setting

Seamless workflow:

* Training

* Tracking & Evaluation
* Publishing

* Life cycle management

Hypervolume

0.350

0.300

0.250

0.200

0.150

0.100

0 50000

o metrics/hypervolume

100000

150000

l&

200000
Step

@
A

Utility K i

")

~
600
500
400
300
200
100
0.00

0 50000 100000 150000 200000
Step.
- metrics/utility A
+ Id # Stage

OP-CLANNLIN-14

OP-CLANNLIN-13

OP-CLANNLIN-12

OP-CLANNLIN-11



4=\ UNIVERSITAT
| DARMSTADT

Interest has been sparked?

You want to build you own solution?
You want to apply MOO to your use cases?

You are curious about the math behind all this?

Eike.Mentzendorff@Spryfox.de
Christian.Debes@Spryfox.de

gPRYFox
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