

Mehrstufenpumpen Vogel Series MP, MPA, MPB, MPV

BAUGRÖSSEN DN 40 - DN 125

Technische Daten

Leistungsbereich:

O Fördermengen bis 340 m³/h (1500 USgpm)

o Förderhöhen bis 500 m (1640 feet)

O Drehzahlen bis 3600 min⁻¹ (3600 rpm)

Mehrstufenpumpen der Baureihe P mit größeren Fördermengen bis 2.000 m³/h (8800 USgpm), siehe separate Broschüre.

Baugrößen:

O DN 40 bis DN 125 (1 1/2" bis 5") Druckstutzen

Fördertemperatur:

o max. 140°C (280°F)

Austrittsdruck:

o bis 55 bar (800 psig)

Exakte Einsatzgrenzen in Abhängigkeit der Ausführung und Betriebsbedingungen siehe technische Datenblätter bzw. Angebot.

Fördermedien:

Reine und leicht verunreinigte Medien wie:

- O Kalt- und Heißwasser
- O Kondensat, Deionat
- o Öle, Suspensionen
- O Säuren und ihre wässrigen Lösungen
- o Laugen
- o Solen

Verwendung:

- o Wasserversorgung
- o Druckerhöhung
- o Beregnung
- o Feuerlöschanlagen
- o Beschneiungsanlagen
- Kühlwasserförderung
- Kesselspeisung
- O Kondensatrückspeisung
- o Fernwärme
- O Osmose und Ultrafiltration
- O Spritzwasser in der Papierindustrie
- o Reinigungsanlagen
- Wasserhaltung im Bergbau

Seit 1910 werden Mehrstufenpumpen im Werk Stockerau entwickelt und gefertigt. Mehr als 100 Jahre Erfahrung zu Ihrer Sicherheit und Ihrem Vorteil.

Baukastensystem

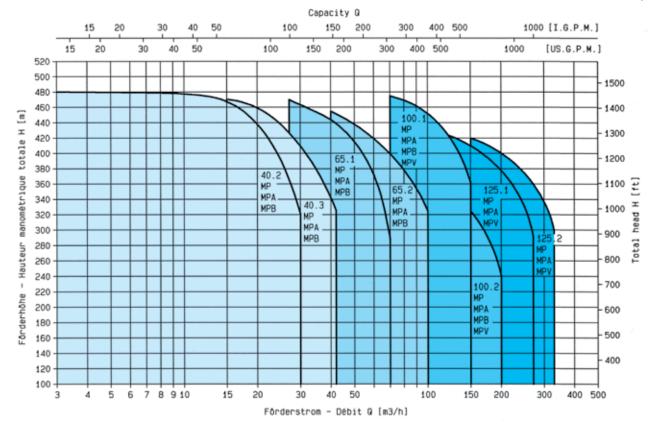
Die VOGEL Mehrstufenpumpen sind nach einem strikten Baukastensystem konstruiert. Dieses Modulsystem erlaubt es mit einer minimalen Anzahl an Komponenten rasch, einfach und wirtschaftlich die verschiedenen Ausführungsvarianten entsprechend dem Kundenbedarf ohne Sonderfertigung bereitzustellen.

Der gesamte Leistungsbereich wird mit 4 mechanischen Baugrößen, die 8 Hydrauliken aufnehmen, abgedeckt.

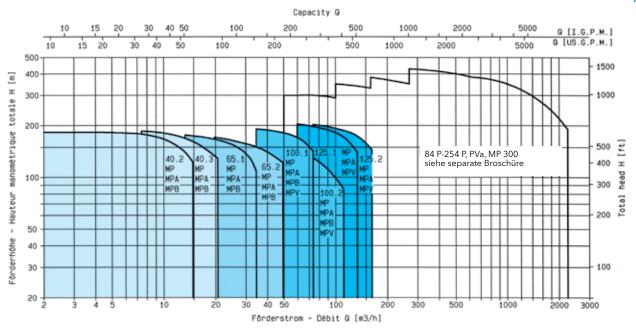
Paugräßa	Druckstutzen DN d [mm]	Saugstutzen DNs [mm]	Hydraulik	Fördermenge Q [m³/h]		
Baugröße 				50 Hz	60 Hz	
MP 40.	40	65	40.2	30	36	
			40.3	42	50	
MP 65.	65	100	65.1	70	80	
			65.2	90	110	
MP 100.	100	125	100.1	150	180	
			100.2	200	240	
MP 125.	125	150	125.1	240	280	
			125.2	300	360	

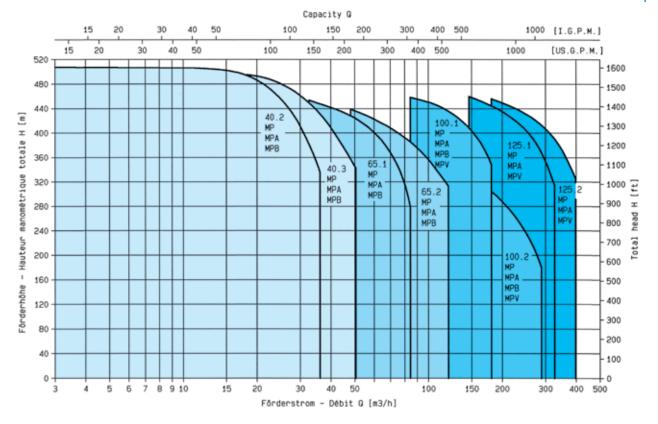
Hydrauliken

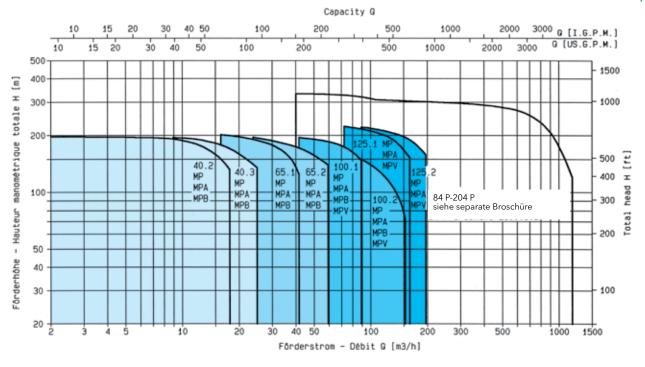
Geschlossene radiale Laufräder mit beidseitigen Dichtleisten. Axialschubausgleich durch Entlastungsbohrungen für geringe Lagerbelastung und lange Lagerlebensdauer.


Leitapparate separat im Stufengehäuse montiert, einfach austauschbar. Ausgeglichene Radialkräfte, geringste Wellenauslenkung, hohe Laufruhe.

Robuste und kompakte Bauweise, ausgelegt für schweren Dauerbetrieb in Industrieanlagen.


Alle Bauarten erfüllen die Anforderungen der ISO 5199/EN 25199.


Ein nach ISO 9001 und 14001 zertifiziertes Qualitätssicherungssystem garantiert den hohen Qualitätsstandard und die Zuverlässigkeit unserer Produkte sowie eine umweltfreundliche Produktion.



1450 r.p.m.

1750 r.p.m.

Ausführungsvarianten

Baureihe MP:

Horizontale Ausführung mit beidseitiger Lagerung. Antrieb druckseitig, rechtslaufend, Eintrittsstutzen links und Druckstutzen radial nach oben (optional andere Stutzenlagen oder eintrittsseitiger Antrieb "linkslaufend" möglich). Lagerung mit Fettschmierung und Nachschmiereinrichtung.

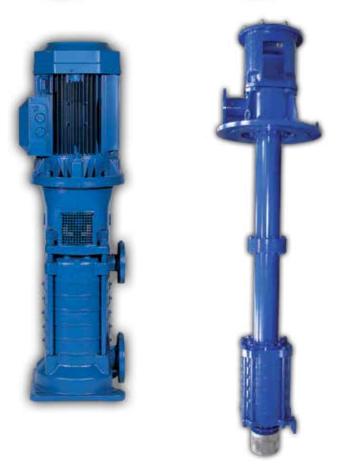
Baureihe MPA:

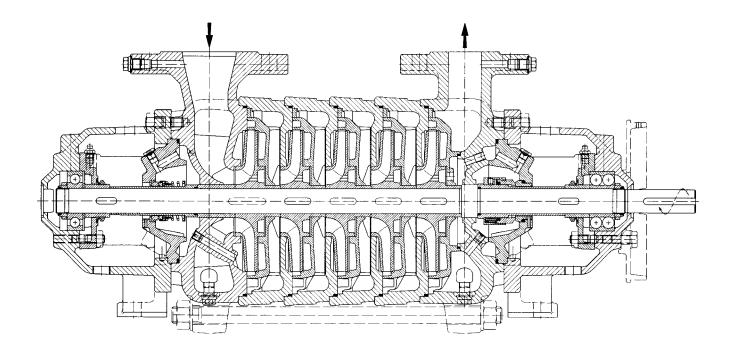
Horizontale Ausführung mit axialem Eintrittsstutzen, Druckstutzen radial nach oben. Antrieb druckseitig. Axiallager antriebsseitig mit Fettschmierung, eintrittsseitig mediumsgeschmiertes Gleitlager zwischen erster und zweiter Stufe. Optional Ausführung mit INDUCER für besonders niedrige NPSH-Werte lieferbar.

Baureihe MPB:

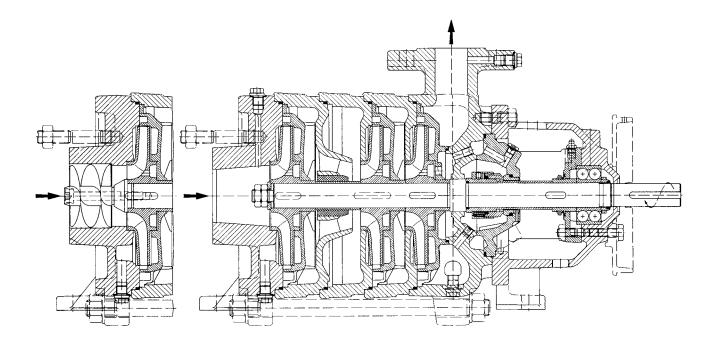
Vertikale Blockausführung mit direkt angebauten IEC Normmotoren bis 90 kW Motorleistung. Pumpen und Motorwelle direkt starr gekuppelt. Platzsparende Konstruktion, besonders geeignet für den Bau von Kompaktanlagen.

Baureihe MPV:

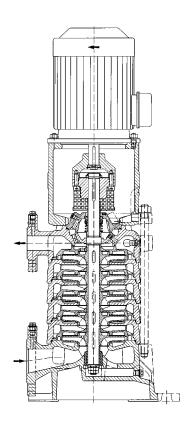

Vertikale Ausführung mit eigenem Axiallager in der Motorlaterne und elastischer Kupplung zwischen Pumpen- und Motorwelle. Standard IEC Normmotore ab 90 kW Motorleistung.


Baureihe MPVS:

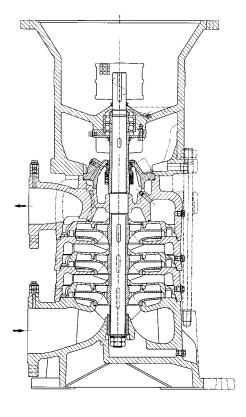
Vertikale Ausführung für den Einbau in Pumpschächte. Einbaulängen bei 2950/3550 min⁻¹ bis zu 4 m und bei 1450/1750 min⁻¹ bis zu 10 m. Optional Ausführung mit INDUCER lieferbar.



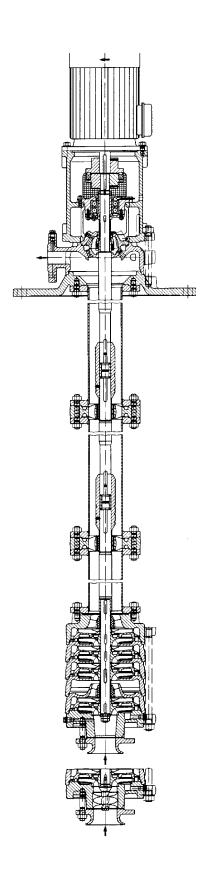
Ausführungsmerkmale MP:


- O Horizontale Ausführung mit beidseitiger Außenlagerung.
- O Antrieb durch Elektromotore, Verbrennungsmotore oder Dampfturbine über elastische Kupplung.
- O Antrieb druckseitig, rechtslaufend vom Antrieb gesehen. Optional linkslaufend mit eintrittseitigem Antrieb möglich.
- O Stutzenstellung: Eintrittsstutzen links vom Antrieb gesehen, Druckstutzen radial nach oben Standard. Optional andere 90° Positionen möglich (bei Bedarf auch nachträglich).
- O Antriebsseitig (druckseitig) zweireihiges Schrägkugellager als Axiallager. Eintrittsseitig Rillenkugellager als Loslager. Fettschmierung mit Nachschmiereinrichtung.
- O Axiale Wärmedehnungen des Pumpenläufers werden intern ohne Beeinflussung der Kupplungsausrichtung aufgenommen.
- O Ausführung mit Gleitringdichtung oder Packungsstopfbuchse, siehe "Wellenabdichtungsvarianten"
- O Wartungsfreundliche Konstruktion. Lagerung und Wellenabdichtung ohne Zerlegen des Pumpenkörpers austauschbar.

Ausführungsmerkmale MPA:


- O Horizontale Ausführung mit axialem Eintrittsstutzen. Optimale Anströmung des ersten Laufrades für beste NPSH Werte.
- O Optionale Ausführung mit INDUCER, Baureihe MPAI mit besonders niedrigen NPSH Werten zur Förderung von Medien nahe am Siededruck.
- o Eintrittsseitig keine Wellenabdichtung.
- O Antrieb druckseitig, rechtslaufend vom Antrieb gesehen.
- O Antriebsseitig (druckseitig) Festlager, zweireihiges Schrägkugellager mit Fettschmierung und Nachschmiereinrichtung. Pumpenseitig mediumsgeschmiertes Gleitlager zwischen erster und zweiter Stufe.
- O Axiale Wärmedehnungen des Pumpenläufers werden intern ohne Beeinflussung der Kupplungsausrichtung aufgenommen.
- O Ausführung mit Gleitringdichtung oder Packungsstopfbuchse siehe "Wellenabdichtungsvarianten".
- O Wartungsfreundliche Konstruktion. Wellenabdichtung ohne Zerlegen des Pumpenkörpers austauschbar.

Alle Baugrößen stehen auch in kompakter und platzsparender vertikaler Ausführung zur Verfügung.

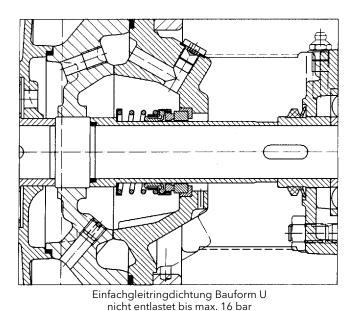

Ausführungsmerkmale MPB:

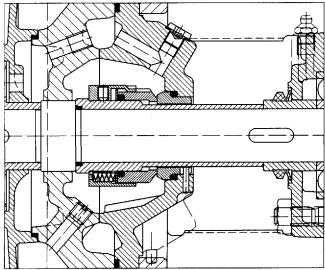
- Vertikale Blockausführung
- Standard Normmotore nach IEC, Bauform V1, Leistungen bis 90 kW
- O Pumpen- und Motorwelle starr gekuppelt
- O Aufnahme der Axialkräfte durch die Motorlagerung
- Radiales mediumgeschmiertes Gleitlager im Eintrittsgehäuse der Pumpe
- Wartungsfreundliche Konstruktion. Wellenabdichtung ohne Zerlegen des Pumpenkörpers austauschbar

Ausführungsmerkmale MPV:

- Vertikale Ausführung mit eigenem Axiallager mit Fettschmierung und Nachschmiereinrichtung
- Standard Motore nach IEC, Bauform V1, Leistungen ab 90 kW bis 355 kW
- O Leistungsübertragung über elastische Kupplung
- Radiales mediumsgeschmiertes Gleitlager im Eintrittsgehäuse der Pumpe
- O Wartungsfreundliche Konstruktion. Lagerung und Wellenabdichtung ohne Zerlegen des Pumpenkörpers austauschbar.

Ausführungsmerkmale MPVS:

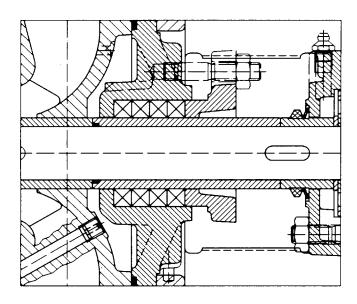

- O Vertikale Ausführung für den Einbau in Pumpenschächte
- Einbaulängen bis zu 4 m bei 2950/3550 min⁻¹ bis zu 10 m bei 1450/1750 min⁻¹
- Eigenes Axiallager mit Fettschmierung und Nachschmiereinrichtung in der Motorlaterne
- O Standard Motore nach IEC, Bauform V1
- O Leistungsübertragung über elastische Kupplung
- Antrieb und Druckabgang überflutungssicher über der Schachtabdeckung
- Mediumsgeschmierte Führungslager im Pumpenteil und Gestänge, Lageranzahl in Abhängigkeit der Einbaulänge
- Geeignet für Drehzahlregelung, kritische Drehzahl grundsätzlich höher als die maximale Betriebsdrehzahl
- Wellenabdichtung Gleitringdichtung oder Packungsstopfbuchse
- Wartungsfreundliche Konstruktion
- O Eintrittsseitig Einlaufdüse, Seiher oder Fußventil
- Optional Ausführung in Topfbauweise zur Förderung von Kondensat oder heißen Medien lieferbar.
- Optional Ausführung mit INDUCER mit besonders niedrigen NPSH Werten zur Förderung von Medien nahe am Siededruck


Wellenabdichtungsvarianten

Gleitringdichtung:

Der Einbauraum der Gleitringdichtung ist nach ISO 3096 ausgeführt. Alle Gleitringdichtungsfabrikate, deren Einbaumaße die EN 12756, Ausführung "k" erfüllen, können somit ohne Änderungen an den Pumpenkomponenten eingebaut werden.

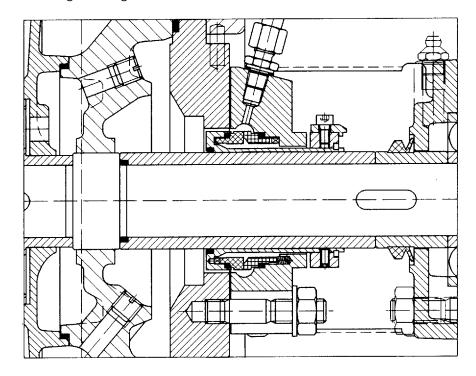
Der große freiliegende Dichtungsraum mit interner Entlüftung und Zirkulation sorgt für optimale Schmierung und Kühlung der Gleitflächen.



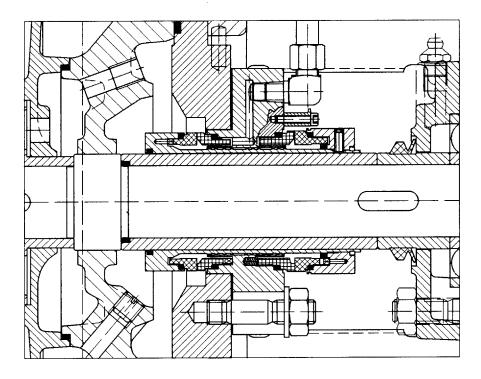
Einfachgleitringdichtung Bauform B entlastet bis max. 55 bar Austrittsdruck

Die genauen Einsatzgrenzen bezüglich Temperatur und Druck in Abhängigkeit des Fördermediums sind den technischen Datenblättern bzw. dem Angebot zu entnehmen.

Packungsstopfbuchse:



Die Ausführung mit Packungsstopfbuchse ist auf einen maximalen Austrittsdruck von 25 bar begrenzt.


Für höhere Austrittsdrücke grundsätzlich Gleitringdichtungen verwenden.

Cartridge Gleitringdichtung:

Die vormontierten Cartridge Gleitringdichtungen bieten den Vorteil einer wesentlich vereinfachten und fehlerfreien Montage bei optimaler Standzeit und Zuverlässigkeit. Die Stillstandszeiten und Kosten beim Wechsel einer Gleitringdichtung können dadurch minimiert werden.

Cartridge Gleitringdichtung einfachwirkend, optional auch mit Quench möglich.

Cartridge Gleitringdichtung doppeltwirkend, mit Anschlüssen für externes Sperrdrucksystem.

Werkstoffe - Pumpenteile

Material Code	Laufräder	Leiträder	Stufen- gehäuse	Saug- gehäuse	Druck- gehäuse	Spaltringe	Welle	Wellen- hülsen
Standardwe	Standardwerkstoffe							
111	0.6025	0.6025	0.6025	0.6025	0.60251)	2)	1.4021	1.4021
211	CC480K	0.6025	0.6025	0.6025	0.60251)	2)	1.4021	1.4021
311	1.4408	0.6025	0.6025	0.6025	0.60251)	2)	1.4021	1.4021
532	1.4408	1.4408	1.4408	1.4408	1.4408	1.4462	1.4462	1.4462
Werkstoffoptionen								
141	0.6025	0.6025	0.7040	0.7040	0.7040	2)	1.4021	1.4021
341	1.4408	0.6025	0.7040	0.7040	0.7040	2)	1.4021	1.4021
151	0.6025	0.6025	1.0619	1.0619	1.0619	2)	1.4021	1.4021
351	1.4408	0.6025	1.0619	1.0619	1.0619	2)	1.4021	1.4021
672	1.4517	1.4517	1.4517	1.4517	1.4517	1.4462	1.4462	1.4462

¹⁾ Bei Austrittsdrücken > 40 bar Druckgehäuse standardmäßig aus 0.7040

Elastomere (O-Ringe) EPDM für Heißwasser bis 140 °C, optional VITON (Einsatzgrenzen und Beständigkeit beachten) Temperatur- und Druckeinsatzgrenzen in Abhängigkeit der Werkstoffausführung, siehe technische Datenblätter.

Werkstoffe - Gegenüberstellung diverser Normen

EN (DIN)		ISO	BSI (UK)	AISI	ASTM
0.6025	EN-GJL-250 (GG 25)	185/Gr. 250	1452 Gr. 220		A 278 Class 30
0.7040	EN-GJS-400-15 (GGG 40)	1083/400-12			A 536 Gr. 60-40-18
1.0619	GP 240 GH (GS-C 25)		1504 161 Gr. 480		A 216 Gr. WCB
CC480K	G-CuSn10				B 584 C 90700
1.4021	X20Cr13	683-13-4	970 420 S 37	420	A 276 Type 420
1.4408	G-X6CrNiMo 18-10		3100-316 C 16	CF8M	A (351) 743 Gr. CF8M
1.4517	G-X3CrNiMoCuN26-6-3-3				A 351 CD4-MCu
1.4462	X2CrNiMoN22-5-3		1503 318 S13		A 276 S31803

${\sf Gleitring dichtung swerk stoffe-Standard werk stoff kombination en}$

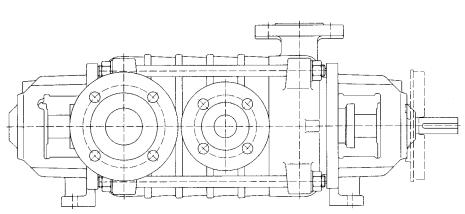
DIN Code	Gleitring	Sitzring	Elastomere	Metallteile
BQ 1 EGG	Kohle 1)	SIC ²)	EPDM	1.4571
BQ 1 VGG	Kohle 1)	SIC ²)	Viton	1.4571
Q1 Q1 VGG	SIC ²)	SIC ²)	Viton	1.4571

¹⁾ Kohle kunstharzgebunden

Einsatzgrenzen bezüglich Druck, Temperatur und Drehzahl sowie Beständigkeit, siehe technische Datenblätter bzw. Angebot.

Andere Werkstoffe auf Anfrage.

²⁾ Optional Gehäusespaltringe aus 1.4462

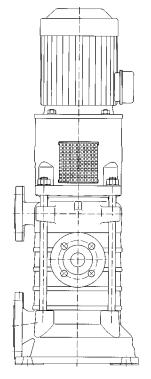

²⁾ reines Siliziumkarbid (ohne freies Silizium)

Multioutlet-Ausführung

Pumpen mit mehreren Druckausgängen

Die Mehrstufenpumpe in Multioutletausführung ist mit zwei oder mehreren Druckstutzen ausgeführt. Die Pumpen werden in Feuerlöschanlagen zur Versorgung mehrerer Druckzonen mit verschiedenen Druckniveaus verwendet.

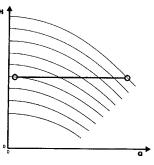
Die Pumpen sind sowohl in horizontaler Ausführung, Baureihe MPM, MPAM, als auch in vertikaler Ausführung, Baureihen MPBM, MPVM lieferbar.



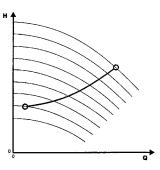
Ergänzend zur Pumpe bieten wir auch ein umfangreiches Zubehörangebot

- o Grundrahmen
- o Kupplungen
- o Kupplungsschutz
- o Motore

- O Freilauf- Rückschlagventile
- o Drehzahlregelung
- O Sonderzubehör auf Kundenwunsch


Vertikale Blockpumpen mit HYDROVAR, Baureihe MPBH

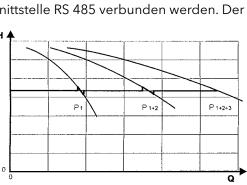
Der HYDROVAR ist eine kompakte automatische Pumpenregelung, die direkt am Antriebsmotor der Pumpe aufgebaut wird.


Leistungsbereich 1,5 bis 22 kW (für Wandmontage bis 45 kW)

Einfachste Montage und Inbetriebnahme, der bisher erforderliche Schaltkasten kann entfallen.


Der integrierte Frequenzumformer beinhaltet eine automatische Druck-, Differenzdruck- oder Mengenregelung.

Regelung auf konstanten Druck


Regelung auf Anlagen kennlinie

Regelung auf konstante Menge

- Wird die Pumpe auf konstanten Druck geregelt (Abb. 1), bewirkt ein patentiertes Regelverfahren die sofortige Stillsetzung der Pumpe bei Verbrauch 0.
- O Zur Regelung nach einer Anlagenkurve (Abb. 2) wird die Fördermenge über die Drehzahl indirekt ermittelt, wodurch eine einstellbare, verbrauchsabhängige Anhebung des Druckes bzw. Differenzdruckes ohne zusätzliche Geräte möglich ist.
- Bei Regelung der Pumpe auf konstante Menge (Abb. 3) kann ein Durchflussmesser mit linearem Messsignal (z.B. IDM) oder eine Messblende mit Differenzdruck-Transmitter eingesetzt werden. Bei Verwendung der Messblende erfolgt die notwendige Radizierung des Messsignals im Hydrovarregelkopf.
- O Die Hydrovarregelpumpe kann auch im Stellbetrieb d.h. auch nach der Drehzahlvorgabe durch ein übergeordnetes Regelsystem arbeiten.
- O Bei Anlagen mit bis zu 8 Pumpen (Abb. 4) können diese über eine Schnittstelle RS 485 verbunden werden. Der
 - in jeder Regeleinheit enthaltene Prozessor sorgt dann sowohl für eine automatische bedarfsgeregelte Folgesteuerung der Maschinen als auch für eine automatische, zyklische Verreihung und selbsttätige Störumschaltung, ohne dass hiefür ein zusätzliches Steuergerät erforderlich wäre.

Detaillierte Ausführungsbeschreibung aller HYDROVAR-Eigenschaften und technische Daten über HYDROVAR-Pumpen, auf Anfrage.

Xylem |'zīləm|

- 1) Das Gewebe in Pflanzen, das Wasser von den Wurzeln nach oben befördert;
- 2) ein führendes globales Wassertechnikunternehmen.

Wir sind 12.500 Menschen, die ein gemeinsames Ziel eint: innovative Lösungen zu schaffen, um den Wasserbedarf unserer Welt zu decken. Im Mittelpunkt unserer Arbeit steht die Entwicklung neuer Technologien, die die Art und Weise der Wassernutzung und Wiedernutzung in der Zukunft verbessern. Wir bewegen, behandeln, analysieren Wasser und führen es in die Umwelt zurück, und wir helfen Menschen, Wasser effizient in ihren Haushalten, Gebäuden, Fabriken und landwirtschaftlichen Betrieben zu nutzen. In mehr als 150 Ländern verfügen wir über feste, langjährige Beziehungen zu Kunden, bei denen wir für unsere leistungsstarke Mischung aus führenden Produktmarken und Anwendungskompetenz, unterstützt durch eine Tradition der Innovation, bekannt sind.

Weitere Informationen darüber, wie Xylem Ihnen helfen kann, finden Sie auf xyleminc.com.

HauptsitzGloor Pumpenbau AG

Thunstrasse 25 CH-3113 Rubigen Tel. +41 (0)58 255 43 34 info@gloor-pumpen.ch www.gloor-pumpen.ch

Filiale Mittelland

Gloor Pumpenbau AG Industriestrasse 25 CH-5036 Oberentfelden

Filiale Suisse Romande

www.gloor-pompes.ch

Gloor Pumpenbau SA Rue du Collège 3 | Case postale CH-1410 Thierrens Tél. +41 (0)58 255 43 34 info@gloor-pompes.ch